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Abstract

On the basis of construction of the mathematical model of vulcanization ratio and numerical calculation of crosslinking structure

parameters and derivation of the control equation of temperature field, two-dimensional space is divided in the manner of triangular element,

then the interpolating function is calculated. Thereafter, the calculation of the element variation and collectivity synthesis is done, and the

procedures of the numerical simulation of vulcanization process are described in detail. Finally, the computer-aided engineering software of

silicone rubber vulcanizing is designed. The rationality of the simulation theory is verified by hardness test and analytical test. q 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

When liquid silicone rubber is used as mould material

and rapid prototype such as LOM prototype is used as

master model of vulcanization, the rapid tooling technology

can greatly reduce production cost and shorten production

period. So the technology becomes one of the investigation

hotspots in the field of advanced manufacturing technology

[1–6].

Therefore, it is important to investigate the numerical

simulation theory and design the computer-aided engineer-

ing software of silicone rubber vulcanizing process. On the

basis, the properties of silicone rubber mould can be

forecasted and the crosslinking structure can be controlled

based on forward simulation method, or the reaction

parameters can be optimized and the original polymeric

material can be designed based on backward simulation

method.

2. Dividing two-dimensional space

For the area D with boundary G, as shown in Fig. 1, it is

divided in the manner of triangular element, the

number of elements is expressed as E. Every element

has its sequence number , ,…. The inner elements

are numbered in advance, the outer elements with the

third kind of thermal boundary condition are numbered

sequentially, the outer elements with the fourth kind of

thermal boundary condition are numbered finally.

The number of nodes is expressed as n, every node also

has its sequence number 1,2,…. Each element connects with

its adjacent elements through its three nodes. For every

element, its three nodes are numbered by i, j and m in the

counterclockwise direction. For simplicity, only one side,

which is numbered by jm, locates on the boundary in every

outer element, and the node i is opposite to the boundary.

3. Calculating interpolating function

An arbitrary element in area D is shown in Fig. 2.

Because the coordinate figures of the three nodes are known

(ascertained by the above discretization of two-dimensional

space), the lengths Si, Sj, Sm of the three sides jm, mi, ij and

the area D of the element can be calculated. In finite element

simulation, the temperature T of an arbitrary point (x, y ) is

dispersed to the three nodes. Namely, the temperature field

of the element is expressed by the three nodal temperatures
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Ti, Tj and Tm, as shown below

T ¼ f ðTi; Tj; TmÞ ð1Þ

The treatment is called after discretization of temperature

field, Eq. (1) is called after interpolating function.

In order to obtain the specific form of the interpolating

function, Eq. (1) should be calculated based on the principle

of discrete mathematics.

Linear interpolating function is the simplest one in finite

element method. If the element is enough small, its error

becomes small enough to satisfy the accuracy requirement

[7–9]. Therefore, the linear interpolating method is

adopted.

The temperature T of an arbitrary point (x, y ) is defined

as the linear function of coordinate figures x, y

T ¼ a1 þ a2x þ a3y ð2Þ

where a1, a2, a3 are undetermined coefficients. The

coordinate figures and temperatures of the three nodes are

fit into Eq. (2), then it is converted into matrix function, a1,

a2, a3 can be achieved by matrix inversion method

a1 ¼
1

2D
½ðxjym 2 xmyjÞTi þ ðxmyi 2 xiymÞTj

þ ðxiyj 2 xjyiÞTm� ð3Þ

a2 ¼
1

2D
½ðyj 2 ymÞTi þ ðym 2 yiÞTj þ ðyi 2 yjÞTm� ð4Þ

a3 ¼
1

2D
½ðxm 2 xjÞTi þ ðxi 2 xmÞTj þ ðxj 2 xiÞTm� ð5Þ

Eqs. (3)–(5) are fit into Eq. (2), then it is converted into

matrix equation

T ¼ Ni Nj Nm

� �
Ti Tj Tm

� �T
¼ ½N�e{T}e ð6Þ

where

Ni ¼
1

2D
½ðxjym 2 xmyjÞ þ ðyj 2 ymÞx þ ðxm 2 xjÞy� ð7Þ

Nj ¼
1

2D
½ðxmyi 2 xiymÞ þ ðym 2 yiÞx þ ðxi 2 xmÞy� ð8Þ

Nm ¼
1

2D
½ðxiyj 2 xjyiÞ þ ðyi 2 yjÞx þ ðxj 2 xiÞy� ð9Þ

Ni, Nj, Nm are called after shape functions.

4. Derivation of element variation equation

When the number of elements is enough large and the

size of every time step is enough little, the expression

k0ðpjT þ qjÞ; j ¼ 1; 2;…;m in every element can be

considered as k0ðpT þ qÞ in every time step, where p is

Nomenclature

fV,c vulcanization ratio corresponding to gel point

fV,i ideal vulcanization ratio

[K ] stiffness matrix of temperature of collectivity

[K ]e stiffness matrix of temperature of element

[N ] alternating temperature matrix of collectivity

[N ]e alternating temperature matrix of element

Nl shape function, corresponding to No. l node

{P} column vector of collectivity, determined by

reaction heat

{Pl}
e column vector of No. l node in element,

determined by reaction heat

p coefficient of vulcanization intensity, corre-

lated with temperature and element, K21

q constant coefficient of vulcanization intensity,

correlated with element

q2 heat-flow density through boundary between

silicone rubber and LOM prototype (W m22)

Sl length of element boundary, corresponding to

No. l node (m)

Tl temperature of No. l node (K)

{T}t column vector of temperature at time t

(unknown)

{T}t2Dt column vector of temperature at time t 2 Dt

(known)

t90 optimum vulcanization time (s)

Wl weighting function of No. l node

xl abscissa of No. l node (m)

yl ordinate of No. l node (m)

D area of triangular element (m2)

Fig. 1. Discretization of two-dimensional space.

Fig. 2. Discretization of temperature field.
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constant and q is constant too. The above treatment will be

adopted in the following calculation of element variation.

For inner element, according to the control equation of

temperature field accompanied by reaction heat, the

equation for element variation calculation can be obtained

›Je

›Tl

¼
ðð

e

"
k

 
›Wl

›x

›T

›x
þ

›Wl

›y

›T

›y

!

2
rLk0

csivi;0

ðpT þ qÞcsiviWl þ rcWl

›T

›t

#
dx dy ðl ¼ i; j;mÞ

ð10Þ

According to the definitions of weighting function and

shape function, the following formula can be obtained

Wl ¼
›T

›Tl

¼ Nl ¼
1

2D
ðal þ blx þ clyÞ ðl ¼ i; j;mÞ ð11Þ

Therefore, ›Wl=›x; ›Wl=›y can be calculated based on

Eqs. (7)–(9). ›T =›x; ›T =›y; ›T =›t can be calculated based

on Eq. (6).

After a series of equation derivation and area coordinate

transformation, the variation equation of inner element can

be obtained and expressed in matrix form

›J

›Tl


 �e

¼ ½K�e{Tl}
e þ ½N�e

›Tl

›t


 �e

2{Pl}
e ðl ¼ i; j;mÞ ð12Þ

where [K ]e and [N ]e are symmetrical and positive definite

matrix, {P1}e is column vector determined by reaction heat.

For outer element, according to the control equation of

temperature field accompanied by reaction heat and the

thermal boundary condition, the equation for element

variation calculation can be obtained

›Je

›Tl

¼
ðð

e

"
k

 
›Wl

›x

›T

›x
þ

›Wl

›y

›T

›y

!

2
rLk0

csivi;0

ðpT þ qÞcsiviWl þ rcWl

›T

›t

#
dx dy

2
ð

jm
kWl

›T

›n
ds ðl ¼ i; j;mÞ ð13Þ

In contrast to the variation Eq. (10) of inner element, there is

a line integral in the variation Eq. (13) of outer element.

According to the research on the thermal boundary

condition in the former article, based on the definitions of

weighting function and interpolating function of tempera-

ture and shape function, the line integral can be calculated.

Therefore, the variation equation of outer element, with the

third kind of thermal boundary condition or with the fourth

kind of thermal boundary condition, can be obtained. The

form is similar with Eq. (12). But the specific arithmetic

expression of every element in matrix [K ]e and [N ]e and

vector {Pl}
e for outer element is different from the

corresponding one for inner element.

5. Calculation of collectivity synthesis

It can be seen that the number of algebraic equations is n

and every equation is composed of accumulative calculation

of all element variation from the following equation of

collectivity synthesis

›JD

›Tl

¼
XE
e¼1

›Je

›Tl

¼ 0 ðl ¼ 1; 2;…; nÞ ð14Þ

After a series of derivation, the equation of collectivity

synthesis for calculating the temperature field accompanied

by reaction heat can be obtained

½K�{T}t þ ½N�
›T

›t


 �
t
¼ {P}t ð15Þ

where the subscript t denotes that all the column vectors

fetch their values at the same time t.

The time domain is divided by backward difference

method, thereby the arithmetic expression for calculating

the column vector {›T =›t}t can be obtained

›T

›t


 �
t
¼

1

Dt
ð{T}t 2 {T}t2DtÞ þ OðDtÞ ð16Þ

The truncation error O(Dt ) is ignored, and Eq. (16) is fit into

Eq. (15), the equation of collectivity synthesis for calculat-

ing temperature field can be obtained, as shown below

½K� þ
½N�

Dt


 �
{T}t ¼ {P}t þ

½N�

Dt
{T}t2Dt ð17Þ

where [K ], [N ], {P}t and {T}t2Dt are known. Therefore, the

temperature field {T}t at the time t can be solved by matrix

operation method.

6. Procedures of numerical simulation

The whole finite element simulation includes two kinds

of iterative computation. One is that the temperature fields

of silicone rubber and LOM prototype are respectively

iterated, the other is that the thermal coupling calculation of

silicone rubber and LOM prototype is iterated. The

implementation procedures are listed below:

1. The temperature field of silicone rubber is computed by

alternative manner. First, the uniform temperature fields

of silicone rubber and LOM prototype are initialized as

TSR0and TLOM0 (the initialization is needed only in the

first time step). Second, the heat-flow density on the

boundary between silicone rubber and LOM prototype is

calculated based on the equation

q2 ¼ hcðT 2 TLOMÞlG ð18Þ
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Third, the temperature field of silicone rubber is

computed by finite element method, then the judgement

on permissibility of relative differences of all nodal

temperatures in fore-and-after computation is formed. If

the relative differences are not within the tolerance range,

the iterative computation is to be done again. Fourth,

according to Eq. (18), the heat-flow density on the

boundary is calculated again, and according to the

principle of heat flow continuity, its negative value is

taken as the thermal boundary condition of LOM

prototype.

2. The analogous method is adopted, the temperature field

of LOM prototype is computed by alternative manner.

After the convergence solution is got, according to Eq.

(18), the heat-flow density on the boundary is calculated

again, and it is taken as the thermal boundary condition

of silicone rubber.

3. The above procedures are repeated until the convergence

solution of the thermal coupling calculation of silicone

rubber and LOM prototype is achieved. Here, the so-

called convergence should be judged by the criterion: on

the boundary between silicone rubber and LOM proto-

type, the relative nodal temperatures and heat-flow

densities should be respectively equal (within a certain

tolerance range).

4. Incremental theory is adopted, then the increment of the

vulcanization ratio of the reactant is calculated in current

time step.

5. The fulldose of the vulcanization ratio fV on every node

from the beginning to the current time step is calculated,

which is compared with the value fV,c (the fulldose of the

vulcanization ratio corresponding to gel point). If

fV , fV,c on a certain node, the numerical computation

expressions of the crosslinking structure parameters

before gel point are adopted to calculate molecular

weight of sol and crosslinking degree of sol, the sol

fraction is regarded as one, the crosslinking degree of gel

and gel fraction are regarded as zero. If fV $ fV,c on a

certain node, the numerical computation expressions of

the crosslinking structure parameters after gel point are

adopted to calculate the crosslinking structure

parameters.

6. The minimum value of the fulldoses of the vulcanization

ratio fV,min on all nodes from the beginning to the current

time step is calculated, which is compared with the ideal

value fV,i (the fulldose of the vulcanization ratio

corresponding to optimum vulcanization effect). If

fV,min , fV,i the program will return to procedure (1) to

perform the finite element simulation in the next time

step. If fV,min $ fV,i the program will transfer into the

post-processing part to calculate the mechanical

properties.

According to the above simulation theory and pro-

cedures, the computer-aided engineering software, named

MSRVM 4.1, has been designed.

7. Example and verification

7.1. Example of engineering application

According to the requirements of a certain service

contract, the geometric model of a certain artwork is

designed with software UGII, then paper is used as

moulding material, the LOM prototype of the artwork is

manufactured with rapid prototyping equipment HRP-III.

At the same time, as shown in Fig. 3, the numerical

simulation of the vulcanization process is performed with

software MSRVM 4.1. The curves of temperature versus

time and vinyl concentration versus time and vulcanization

ratio versus time and sol fraction versus time and

crosslinking degree versus time of three representative

points are shown in Figs. 4–8.

It can be seen from Figs. 4–8 that the temperature and

vulcanization ratio and crosslinking degree increase with

the time increase, and that the vinyl concentration and sol

fraction decrease with the time increase.

The temperature and vulcanization ratio and crosslinking

degree of point C are largest, the vinyl concentration and sol

fraction of point C are smallest among the three points at the

same time. The characteristics of point A are contrary to

point C.

7.2. Hardness test and discussion

According to the structure and shape and dimension as

Fig. 3. Sketch of hot vulcanizing (unit: mm).

Fig. 4. Curves of temperature versus time (–V– represents point A, –B–

represents point B, –O– represents point C).
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shown in Fig. 3, the above-mentioned silicone rubber

material is used as mould material, the temperature of

electric oven is set for 65 8C, five kinds of silicone rubber

moulds have been manufactured, respectively, correspond-

ing to five kinds of vulcanization time 75, 105, 135, 165, and

180 min. Then the hardness HA of the above-mentioned

points is measured immediately. The results are shown in

Fig. 9.

It can be seen from Fig. 9 that the hardness of point C is

constant since 75 min, the hardness of point B and point A

increases gradually. The hardness of point B becomes

biggest at about 135 min, The hardness of point A becomes

biggest at about 165 min, which is basically coincident with

the numerical simulation results as shown in Figs. 6 and 8.

7.3. Analytical test and discussion

The sol fraction of point C is measured based on

gravimetric method. The experimental results are shown as

broad-brush curve in Fig. 10. For the convenience of

comparison, the theoretical curve of point C in Fig. 7 is

redrawn as slimline in Fig. 10.

It can be seen from Fig. 10 that the difference between

experimental curve and theoretical curve is little in the

forepart of the vulcanization course, but the difference

increases with the time increase.

For the phenomenon, the explanation is shown below.

In the forepart of the vulcanization course, the viscosity

of the reactant is low, the activity space of polysiloxane

molecule is so large that vinyl can freely react chemically

with crosslinking agent. Therefore, the chemical reaction is

Fig. 5. Curves of vinyl concentration versus time (–V– represents point A,

–B– represents point B, –O– represents point C).

Fig. 6. Curves of vulcanization ratio versus time (–V– represents point A,

–B– represents point B, –O– represents point C).

Fig. 7. Curves of sol fraction versus time (–V– represents point A, –B–

represents point B, –O– represents point C).

Fig. 8. Curves of crosslinking degree versus time (–V– represents point A,

–B– represents point B, –O– represents point C).

Fig. 9. Experimental curves of hardness versus time.

Fig. 10. Experimental curve and theoretical curve.
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controlled by kinetics. During the period, the pure kinetic

model in the numerical simulation theory can accurately

describe the actual vulcanization so that the difference

between the experimental data and the calculated data is

little.

With the time increase, the viscosity of the reactant

increases, and the diffuse motion of the macromolecule and

catalyzer progressively influences the reaction rate. The

chemical reaction is controlled by reaction mechanism and

diffusion mechanism [10–12]. During the period, the pure

kinetic model in the numerical simulation theory can only

approximately describe the actual vulcanization. Therefore,

the experimental data of the sol fraction are bigger than the

calculated data, and the difference between them increases

with the time increase.

8. Conclusions

1. The numerical simulation theory on silicone rubber

vulcanizing is constructed by finite element method.

2. The procedures of the finite element simulation are

described in detail, consequently the computer-aided

engineering software of the vulcanization process is

designed.

3. The rationality of the simulation theory is verified by

hardness test and analytical test.
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